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ABSTRACT

This paper presents and evaluates an inverse filtering technique of
the speech signal which is based on the Stabilized Weighted Lin-
ear Prediction (SWLP) of speech [1]. SWLP emphasizes the speech
samples that fit the underlying speech production model well, by
imposing temporal weighting of the square of the residual signal.
The performance of SWLP is compared to the conventional Linear
Prediction based inverse filtering techniques, such as the Autocorre-
lation and Closed Phase Covariance method. All the inverse filtering
approaches are evaluated on a database of speech signals generated
by a physical model of the voice production system. Results show
that the estimated glottal flows using SWLP are closer to the original
glottal flow than those estimated by the Autocorrelation approach,
while its performance is comparable to the Closed Phase Covariance
approach.

Index Terms— Inverse filtering, Linear prediction, Closed
Phase analysis, Speech analysis.

1. INTRODUCTION
Inverse filtering is a widely known method for voice and speech
analysis, which mainly focuses on estimating the source of voiced
speech, the glottal volume velocity waveform (or glottal airflow).
The idea behind inverse filtering is to form a computational model
for the vocal tract signal and then to cancel its effect from the speech
waveform by filtering the speech signal through the inverse of the
model. This makes apparent that inverse filtering is greatly depen-
dent on robust vocal tract filter estimation. Inverse filtering has
been extensively used in basic research of speech production and
in speech synthesis, but it is awakening increasing interests also in
the areas of environmental voice care of the emotional content of
speech.
Since the first proposal by Miller [2], there have been several meth-
ods of inverse filtering in the literature. A number of them use
additional information except from the speech signal itself, such as
the electroglottographic (EGG) signal [3]. Other techniques include
iterative methods to robustly estimate the glottal flow [4], while there
are also approaches on joint estimation of the vocal tract system,
modeled as an Autoregressive (AR) process, and the parameters of
the glottal flow [5]. Most of the methods rely on Linear Prediction
(LP) analysis of speech. LP is a well-known all-pole method for
estimating the vocal tract signal, and there are two ways to compute
it: autocorrelation and covariance method [6], but they both suffer
from drawbacks. The Autocorrelation method produces a stable
but biased solution for the vocal tract for a limited size window
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analysis. The Covariance method does not guarantee the stability
of the estimated filter but it may produce an unbiased solution for
limited size window analysis. Therefore, the Covariance approach is
most suitable for the analysis of speech during the closed phase (i.e.,
when the glottis is closed) where the autoregressive hypothesis for
the production of the speech signal is most valid, and this is referred
to as Closed Phase Covariance method. The main issue there, is the
estimation of the closed phase from the speech signal.
A fundamental problem in comparing the effectiveness of the cur-
rent inverse filtering approaches and furthermore in developing new
inverse filtering techniques for speech, is the fact that the true glottal
air-flow signal is not known. A common approach to cope with
this problem is to assess the performance of inverse filtering by
using synthetic speech signals that have been created using a known,
artificial waveform of the glottal excitation. However, this kind
of evaluation is not truly objective because speech synthesis and
inverse filtering analysis are both typically based on the source-filter
model of the human voice production system.
In this paper, the performance of a recently developed all-pole
method for speech recognition, referred to as Stabilized Weighted
Linear Prediction, is discussed for the purpose of inverse filtering
of speech and its performance is compared to the conventional
LP techniques such as the Autocorrelation based and the Closed
Phase Covariance based inverse filtering approaches.To overcome
the aforementioned problem of knowing the true glottal airflow, ex-
periments were conducted on a database of speech signals generated
by a physical model of the vocal folds and the vocal tract suggested
by Titze and Story [7]. The major advantage of this database is
that both the speech pressure signal and the glottal excitation signal
are available. By using the simulated speech pressure waveform as
an input to an inverse filtering method, it is possible to determine
how closely the obtained estimate of the voice source matches the
simulated glottal flow. Time and frequency domain measures are
applied on the original and the estimated glottal flows in order to
quantify the similarity of the waveforms. It is shown that SWLP
outperforms the conventional autocorrelation-based inverse filtering
approach, while its performance is comparable to the closed phase
covariance-based inverse filtering method, if in the latter case the
closed phase is accurately identified from the speech signal.
The rest of this paper is organized as follows. In Section 2, the
Stabilized Weighted Linear Prediction, SWLP, is quickly reviewed
and its properties that make it convenient for inverse filtering are
discussed. In Section 3, the inverse filtering procedure is described,
whereas in Section 4, the inverse filtering performance of SWLP
compared to conventional LP approaches is demonstrated. Finally,
Section 5 concludes the paper.



2. OVERVIEW OF SWLP
Stabilized Weighted Linear Prediction (SWLP) was introduced
by Magi et al. [1], as an all-pole modeling method based on the
Weighted Linear Prediction (WLP) [8]. A quick review of WLP and
SWLP is following next.

2.1. Weighted Linear Prediction, WLP
As in conventional LP, sample x[n] is estimated by a linear combi-
nation of the past p samples:

x̂[n] = −
p∑

i=1

aix[n− i], (1)

where the coefficients ai ∈ ℜ. The prediction error en(a), or the
residual, is defined as

en(a) = x[n]− x̂[n] = x[n] +

p∑
i=1

aix[n− i] = aTx[n], (2)

where a = [a0 a1 · · · ap]
T with a0 = 1 and x[n] = [x[n] · · ·x[n−

p]]T .
The prediction error energy E(a) in the WLP method is given by

E(a) =

N+p∑
n=1

(en(a))
2wn = aT

(N+p∑
n=1

wnx[n]x
T [n]

)
a = aTRa,

(3)
where wn is the weight imposed on sample n, N is the length of

the signal x[n], and R =

N+p∑
n=1

wnx[n]x
T [n]. This is a constrained

minimization problem:

minimize E(a) subject to aTu = 1,

where u is the vector defined as u = [1 0 ... 0]T . It can be seen that
the autocorrelation matrix R is weighted, in contrast to the conven-
tional LP analysis. Because of this weighting function, matrix R in
(3) is symmetric but not Toeplitz. However, it is positive definite,
and this makes the minimization problem convex. Using Lagrange
multipliers, it can be shown that a satisfies the linear equation

Ra = σ2u, (4)

where σ2 = aTRa is the error energy. Finally, the WLP all-
pole model is obtained as H(z) = 1/A(z), where A(z) =
1 +

∑p
i=1 aiz

−i.

2.2. Weighting function
The time domain weighting function wn is the key point of WLP.
In [8], the weighting function was chosen to be the Short-Time En-
ergy (STE)

wn =

M−1∑
i=0

x[n− i− 1]2, (5)

where M is the length of the STE window. The use of the STE
window can be justified as following. STE emphasizes the speech
samples of large amplitude which typically occur during the closed
phase interval of glottis. It is well-known that applying LP analysis
on speech samples that belong to the glottal closed phase interval
will generally result in a more robust spectral representation of the
vocal tract since the hypothesis that speech samples have been pro-
duced by an autoregressive process is more valid. Therefore, increas-
ing the weight on these samples that occur during the glottal closed

phase it is more likely to estimate accurately the vocal tract filer.
This makes WLP a promising method for inverse filtering. Note that
closed phase (CP) covariance techniques also exploit the CP interval.
However, they typically suffer from lack of robustness in the iden-
tification of the CP interval. In Fig.1, the correlation between the
glottal closed phase and the STE weighting function is illustrated on
a clean vowel.
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Fig. 1. Upper panel: time domain waveforms of speech (vowel
/a/ produced by male speaker) and short-time energy (STE) weight
function (M=8). Lower panel: Glottal flow waveform of the vowel
/a/ together with the STE weight function (M=8).

2.3. Stabilized WLP, SWLP
The WLP method with the STE window does not ensure stability
of the all-pole model. Therefore, in [1], a formula for a generalized
weighting function to be used in WLP is developed in order to guar-
antee stability. The autocorrelation matrix R in (4) can be expressed
as

R = YTY, (6)

where
Y = [y0 y1 · · ·yp] ∈ ℜ(N+p)x(p+1)

and
y0 = [

√
w1x[1] · · ·

√
wNx[N ] 0 · · · 0]T .

The column vectors are given by

yk+1 = Byk, k = 0, 1, · · · , p− 1, (7)

where B is a matrix with all elements zero except the secondary
diagonal of the matrix which defined for all i = 1, · · · , N + p − 1
as

Bi+1,i =

{ √
wi+1/wi, if wi ≤ wi+1

1, if wi > wi+1

The WLP method using matrix B is referred to as Stabilized
Weighted Linear Prediction, and it can be shown that the obtained
all-pole filter is always stable [1].

3. INVERSE FILTERING PROCEDURE AND
EVALUATION MEASURES

All the inverse filtering approaches studied here were applied on
a database of sustained vowels generated by a physical model of
the human voice production system [7]. By using the simulated
speech pressure waveform as an input to an inverse filtering method,
it is possible to determine how closely the obtained estimate of the
voice source matches the simulated glottal flow. The sound pressure
and glottal flow waveforms were generated with a computational



model of the vocal folds and acoustic wave propagation and were
digitized using a sampling frequency of Fs = 8kHz and precision
of 16bits. In detail, self-sustained vocal fold vibration was simu-
lated with three masses coupled to one another through stiffness and
damping elements. The input parameters to the model consisted of
lung pressure, prephonatory glottal half-width (adduction), resting
vocal fold length and thickness, and normalized activation levels
of the crycothyroid (CT) and thyroarytenoid (TA) muscles, which
were then transformed into mechanical parameters for the model,
according to [7]. Both adult male and female speech were produced
produced by modifying the resting vocal fold length and activation
levels of the CT and TA muscles. Eight different fundamental fre-
quency values (105, 115, 130, and 145 Hz for adult male speech,
and 205, 210, 230 and 255 Hz for female speech) for each vowel
were generated.
The order for the autoregressive process for all the considered in-
verse filter approaches was p = 10. Specifically we consider two
standard approaches: the autocorrelation method, which will be
noted here as LPC, and the Closed Phase Covariance method, noted
as CovLPC. For the suggested SWLP approach, the parameter M
was set to 8 and 24, a relatively low and high value for M (according
to previous works on SWLP, i.e., [1]), in order to investigate the
role of M during the inverse filtering process. The different choices
for M will be noted as SWLP8 and SWLP24, for M = 8 and
M = 24, respectively.
The analysis window was set to 250 ms for the autocorrelation
based approaches (i.e., SWLP8, SWLP24, and LPC). while for
CovLPC this was determined by the detected closed phase interval.
The closed phase interval was determined by the stability of the
first formant, regarding its frequency, as suggested in [9]. A typical
Hanning window was used for the autocorrelation based approaches
while a rectangular window was used for the CovLPC method. The
frame rate of the analysis was set equal to one pitch period for all
methods. Before estimating the all-pole filter, the lip radiation effect
was canceled by a first order all-pole filter with its pole at z = 0.999.
Specifically for CovLPC and because the covariance method does
not guarantee stability of the estimated all-pole filter, the poles of
the estimated filter were computed and those which were located
outside the unit circle were simply replaced by their corresponding
mirror image inside the unit circle, while the poles on the positive
real axis were removed. This modified filter was then used for in-
verse filtering.
Using the estimated filters (i.e., SWLP8, SWLP24, LPC, CovLPC),
the inverse filtered speech signals were computed in a frame by
frame basis. For this, a window of two local pitch periods and a
frame rate of one pitch period was applied. The overall glottal flow
was synthesized using the Overlap-Add (OLA) method.
The selected evaluation measures for assessing the performance of
the inverse filtering techniques were the Signal to Reconstruction
Error ratio (SRER), and H1-H2. SRER is a standard index for
measuring the effectiveness of modeling a waveform and is defined
as:

SRER = 20 log10

(σs[n]

σe[n]

)
(8)

where s[n] is the original (or true) glottal flow signal in our case, e[n]
is the modeling (or reconstruction) error, e[n] = s[n]− ŝ[n], and σ
denotes the corresponding standard deviation. SRER was computed
from the overall glottal flow waveforms.
H1-H2 is a frequency domain metric and is derived from the spec-
trum of the glottal flow [10]. H1-H2 is defined as the difference in
decibel between the amplitudes of the fundamental and the second
harmonic of the source spectrum. H1-H2 is an index of the spectral

decay (or spectral tilt) of the glottal spectrum. To compare the es-
timated glottal airflow with the true glottal airflow using the above
frequency domain metric, we suggest to measure the difference be-
tween these two measurements from the estimated and the true glot-
tal airflow. More specifically we suggest:

ERH1H2 =
∣∣∣RefH1H2 − EstH1H2

∣∣∣ (9)

where RefH1H2 and EstH1H2 denote the H1-H2 metric for the
true (or reference) and the estimated glottal airflow, respectively.
For a good estimation ERH1H2 should be close to zero.
These specific measures were selected for the evaluation of the
inverse filtering approaches because they can be automatically ex-
tracted from the data without any user adjustment.

4. RESULTS
In our experiments, 4 different vowels, /aa/, /ae/, /eh/, and /ih/,
with 8 different fundamental frequencies for each vowel were used:
105, 115, 130, 145, 205, 210, 230, and 255 Hz. Two characteristic
examples of the inverse filtered waveforms for two fundamental
frequencies, 105 and 230 Hz, of the vowels /aa/ and /eh/ are shown
in Fig.2 and Fig.3, respectively. Based on the results shown in Fig.2
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Fig. 2. Glottal flow estimates for vowel /aa/ of f0 = 105 Hz. Upper
panel: Original glottal flow. Middle panel: Covariance (left) and
Autocorrelation (right) based glottal flow estimates. Lower panel:
SWLP with M = 8 and M = 24 glottal flow estimates. In all
panels, time is indicated in samples.

and Fig.3, the glottal flow estimate based on SWLP with M = 24
is closer to the original glottal flow than that of the conventional
autocorrelation method (LPC) that estimate is very close to CovLPC
glottal flow estimate. This is true for all vowels and f0s in our ex-
periments, for frames where the closed phase interval is accurately
identified. For low pitch vowels (as in Fig.2 with f0 = 105 Hz ),
SWLP with M = 24 glottal flow estimate shows a decreased ripple
in the closed phase interval than the conventional autocorrelation
approach (LPC). For higher pitch vowels (as in Fig.3, for f0 = 230
Hz), the closed phase interval is smaller, and thus the samples with
high amplitude that typically belong to that interval are less than
in the lower pitch cases. In these cases, a low value of M is more
suitable. However, a low value of the M parameter influences in a
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Fig. 3. Glottal flow estimates for vowel /eh/ of f0 = 230 Hz. Upper
panel: Original glottal flow. Middle panel: Covariance (left) and
Autocorrelation (right) based glottal flow estimates. Lower panel:
SWLP with M = 8 and M = 24 glottal flow estimates. In all
panels, time is indicated in samples.

negative way the estimation of the vocal tract filter as it was shown
in [1]. Indeed, the behavior of SWLP in spectral modeling depends
on the M parameter: for lower M values, SWLP shows a smooth
spectral behavior, whereas for higher M values, the sharpness of
the resonances in the SWLP spectrum increases. Therefore, for high
pitch speakers, it would be interesting to investigate the combination
of contiguous closed phase speech samples in order to be able to
increase the value for M .
To compare the estimated glottal air-flow signals with the original
ones, the aforementioned measures for all vowels and frequencies
were used and their mean and standard deviation values are shown
in Tables 1 and 2, for SRER and ERH1H2, respectively. Based on

SRER
Vowel SWLP8 SWLP24 LPC CovLPC
/aa/ 33.5 (±2.0) 39.7 (±4.5) 36.2 (±5.7) 41.9 (±6.3)
/ae/ 32.7 (±4.4) 35.2 (±2.9) 37.8 (±3.0) 40.4 (±6.4)
/eh/ 34.0 (±1.9) 38.4 (±4.2) 33.9 (±4.0) 40.5 (±5.2)
/ih/ 32.3 (±1.5) 37.6 (±3.1) 35.3 (±4.6) 39.2 (±5.6)

Table 1. Mean and standard deviation of the SRER value for each
vowel (all 8 frequencies) and method is illustrated.

the results listed in Table 1, SWLP24 provides better results than
SWLP8 in all cases. It also provides better results than LPC except
in the case of /ae/. For this time domain criterion, the Closed
Phase Covariance approach (CovLPC) provides the best results with
higher, however, standard deviation, following from the suggested
approach. Note that in this case, however, the closed phase inter-
val was estimated and used explicitly by CovLPC while SWLP24

was using that information only implicitly (through the weighting
function). Using the frequency domain criterion, Table 2 shows that
SWLP24 outperforms significantly the LPC approach while it is
quite close to the performance provided by CovLPC. However, note
also in this case the high standard deviation for CovLPC in contrast
to the low standard deviation obtained for SWLP24.

ERH1H2

Vowel SWLP8 SWLP24 LPC CovLPC
/aa/ 0.68 (±0.10) 0.23 (±0.09) 0.75 (±0.09) 0.20 (±0.20)
/ae/ 0.15 (±0.12) 0.15 (±0.05) 0.55 (±0.05) 0.18 (±0.13)
/eh/ 0.34 (±0.09) 0.30 (±0.07) 0.54 (±0.08) 0.38 (±0.17)
/ih/ 0.72 (±0.14) 0.39 (±0.11) 0.85 (±0.12) 0.35 (±0.24)

Table 2. Mean and the standard deviation of ERH1H2 for each
vowel (all 8 frequencies) and each method is illustrated.

5. CONCLUSIONS
In this paper, we discussed the performance of the Stabilized
Weighted Linear Prediction in inverse filtering speech waveforms.
This method applies temporal weighting on the square of the resid-
ual signal, and thus emphasizing the samples of high energy, which
typically belong to the closed phase interval during phonation. The
method was tested on a database produced by physical modeling of
the voice production system. Using a time domain and a frequency
domain criterion, it was shown that the glottal flow waveforms ob-
tained by SWLP are closer to the original glottal flow waveform
than those obtained by the conventional autocorrelation linear pre-
diction method and is comparable to the conventional closed phase
covariance method.
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